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Abstract. We consider the effect of Coulomb interactions on the average density of states (DOS) of dis-
ordered low-dimensional metals for temperatures T and frequencies ω smaller than the inverse elastic
life-time 1/τ0. Using the fact that long-range Coulomb interactions in two dimensions (2d) generate
ln2-singularities in the DOS ν(ω) but only ln-singularities in the conductivity σ(ω), we can re-sum the
most singular contributions to the average DOS via a simple gauge-transformation. If limω→0 σ(ω) > 0,
then a metallic Coulomb gap ν(ω) ∝ |ω|/e4 appears in the DOS at T = 0 for frequencies below a cer-
tain crossover frequency Ω2 which depends on the value of the DC conductivity σ(0). Here, −e is the
charge of the electron. Naively adopting the same procedure to calculate the DOS in quasi 1d metals, we
find ν(ω) ∝ (|ω|/Ω1)1/2 exp(−Ω1/|ω|) at T = 0, where Ω1 is some interaction-dependent frequency scale.
However, we argue that in quasi 1d the above gauge-transformation method is on less firm grounds than
in 2d. We also discuss the behavior of the DOS at finite temperatures and give numerical results for the
expected tunneling conductance that can be compared with experiments.

PACS. 71.10.Pm Fermions in reduced dimensions – 71.23.-k Electronic structure of disordered solids
– 71.30.+h Metal-insulator transitions and other electronic transitions – 72.15.Rn Localization effects
(Anderson or weak localization)

1 Introduction

In the early eighties, Altshuler and Aronov [1] perturba-
tively studied the effect of electron-electron interactions
on the density of states (DOS) of low-dimensional weakly
disordered interacting electronic systems. For tempera-
tures T and frequencies ω smaller than the inverse elastic
life-time 1/τ0, they found that in reduced dimensions the
interplay between disorder and electron-electron interac-
tions gives rise to singular corrections to the average DOS.
In two dimensions (2d), the long-range Coulomb interac-
tion leads to a ln2-correction to the average DOS [1],

ν(ω) ∼ ν0

[
1− r0

4
ln(|ω|τ0) ln(|ω|τ1)

]
, 2d , T = 0 , (1)

where

r0 =
1

(2π)2ν0D0
=

2e2

(2π)2σ0
=

1
πkF `

(2)

is a dimensionless measure for the resistance of the sys-
tem at frequency scale ω ≈ τ−1

0 (where σ0 is the Drude
conductivity), and the interaction-dependent time τ1 is
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given by

τ1 =
1

D2
0κ

4τ0
=

4τ0
(κ`)4

· (3)

Here, κ = 2me2 is the Thomas-Fermi screening wave-
vector in two dimensions, ν0 = m/2π is the DOS at the
Fermi energy (per spin projection) of electrons with effec-
tive mass m and charge −e, D0 = vF `/2 is the diffusion
coefficient in 2d, and ` = vF τ0 is the elastic mean free
path. We use units such that ~ = kB = 1. Note that for
a good metal at high densities the Thomas-Fermi screen-
ing length is short compared with the elastic mean free
path (κ`� 1) so that τ1 � τ0. In quasi 1d metallic wires
(which consist of many transverse channels but permit dif-
fusive motion only in one direction), the leading correction
to the average DOS is [1]

ν(ω) ∼ ν0

[
1−

√
4Ω1

π|ω|

]
, quasi 1d , T = 0 , (4)

where ν0 = 1/(πvF ) is the DOS per spin in 1d, and the fre-
quency scale Ω1 depends on the effective electron-electron
interaction constant f0,

Ω1 =
f2

0

32πD0
· (5)
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Here, D0 = vF ` is the (bare) diffusion coefficient in
quasi 1d.

Obviously, the correction terms in equations (1)
and (4) diverge for ω → 0, so that at low frequencies
these perturbative expressions cease to be valid. What is
the true low-frequency behavior of the DOS of disordered
metals in reduced dimensions? The answer to this ques-
tion is relevant for a number of recent tunneling experi-
ments [2–4], where a strong suppression of the tunneling
conductance G(V ) as a function of the applied voltage has
been observed (zero bias anomaly). The tunneling con-
ductance is related to the DOS via G(V ) ∝ ν(ω = eV ),
so that the experimentally observed zero bias anomaly in
the tunneling conductance reflects the strong suppression
of the average DOS at the Fermi energy.

In 2d, the low-temperature behavior of the DOS of
a strongly correlated disordered metal has recently been
measured by Bielejec et al. [2]. While at higher temper-
atures they found a logarithmic correction, at the lowest
temperatures they found a stronger-than linear suppres-
sion of the DOS, which has been interpreted in terms of
a hard correlation gap. The knowledge of the low-energy
behavior of the DOS of a 2d disordered metal with a fi-
nite conductivity might also be important to gain a better
understanding of the physical mechanism that is respon-
sible for the apparent metal-insulator transition in doped
semiconductor devices [5,6]. An intensely studied quasi 1d
system where under certain conditions the electrons prop-
agate diffusively in only one direction are multi-wall car-
bon nanotubes [3,4].

Let us briefly review previous calculations of the zero
bias anomaly. In 2d, the first attempt to determine the
true low-frequency asymptotics of ν(ω) was apparently
due to Finkelstein [7] who found that for frequencies
exceeding the crossover frequency

Ω2 ≡ τ−1
0 exp[−1/r0] , (6)

the perturbative expression given in equation (1) can
actually be exponentiated, so that

ν(ω) ≈ ν0 exp
[
−r0

4
ln(|ω|τ0) ln(|ω|τ1)

]
. (7)

This expression has been re-derived in different ways by
several authors [8–11]. It should be emphasized that equa-
tion (7) is not valid for frequencies smaller than the
crossover frequency Ω2 defined in equation (6) [7,8,10,11].
For ω → 0 Finkelstein [7] found that ν(ω) ∝ |ω|1/4. How-
ever, in the derivation of this result he assumed that the
conductivity σ(ω) diverges logarithmically for ω → 0. The
behavior of the DOS of 2d disordered electrons with a fi-
nite conductivity which is of experimental interest was
not calculated by Finkelstein. A simple interpolation for-
mula for the DOS, which yields a physically sensible re-
sult even for ω → 0, has been proposed by one of us in
reference [10]. This formula is based on a re-summation of
the leading ln2-singularities to all orders in perturbation

theory, consistently neglecting sub-leading terms that in-
volve only logarithmic corrections. In this approximation,
one obtains

ν(ω) ≈ ν0
2
π

∫ ∞
τ0

dt
sin(|ω|t)

t
exp

[
−r0

4
ln(t/τ0) ln(t/τ1)

]
·

(8)

For |ω| & Ω2 = τ−1
0 exp[−1/r0], this expression reduces

to equation (7). Note that equation (8) amounts to an
exponentiation of the perturbative result in the time do-
main, whereas in equation (7) the perturbation series is
exponentiated in frequency space. We will further discuss
equation (8) in Section 3.

The zero bias anomaly in 1d has so far received much
less attention than the corresponding anomaly in 2d.
Recent experiments on metallic carbon nanotubes have
motivated Mishchenko et al. [12] to study the fate of the
perturbative Altshuler-Aronov correction in 1d at low fre-
quencies. They found that long-range Coulomb interac-
tions in a quasi 1d metal lead for ω → 0 to an exponen-
tially small DOS,

ν(ω) ∝ exp
[
− ε0
|ω| ln

(
ε1
|ω|

)]
, (9)

where ε0 and ε1 are some finite energy scales. We shall fur-
ther comment on this result below. A similar result was
also obtained by Rollbühler and Grabert [13]. For frequen-
cies exceeding a crossover scale D0/(2πR)2, where R is the
radius of the nanotube, Egger and Gogolin [14] found a
crossover to two-dimensionality, which results in a power-
law dependence of the DOS. However, below this crossover
scale, 1d behavior can be expected.

The rest of this work is organized as follows: In Sec-
tion 2 we critically review the non-perturbative method
leading to the above results for the zero bias anomaly. In
particular, we argue that only in the case of long-range
Coulomb interactions in 2d the method can be formally
justified. In Section 3 we generalize the calculation of ref-
erence [10] to finite temperatures and present numerical
results for the frequency-dependence of the average DOS
which in principle can be compared with experimentally
measured tunneling conductances. In Section 4 we discuss
the DOS in quasi 1d. Finally, we end with a brief summary.

2 Summing the leading singularities
via a gauge transformation

The average DOS of a d-dimensional interacting Fermi
system with volume V can be written at finite temperature
T = 1/β in terms of the disorder-averaged Green function
at coinciding space points G(ω) ≡ G(r, r, ω) as

ν(ω, T ) = − 1
π

coth
(
βω

2

)
ImG(ω) . (10)

To make contact with the disorder-averaged imaginary-
time Green function at coinciding space points
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G(τ) ≡ G(r, r, τ), we notice that due to particle-hole
symmetry near the Fermi energy we have

G(ω) = −2
∫ ∞

0

dt sinωt G(τ → it+ 0+) . (11)

The problem of calculating the average DOS is now re-
duced to the problem of calculating the disorder-averaged
imaginary-time Green function.

An attempt to calculate ν(ω) within perturbation
theory fails at low frequencies because the perturbative
expansion of ν(ω) is plagued by singularities, see equa-
tions (1) and (4). In 2d with long-range Coulomb inter-
actions, these singularities diverge as ln2 ω. At the same
time, however, the perturbative expansion of the conduc-
tivity σ(ω) contains only less severe lnω-singularities [1,7].
As a consequence, for sufficiently small frequencies, we
may re-sum the most singular terms in the expansion
of the average DOS without considering simultaneously
a similar re-summation for the average conductivity, be-
cause we know a priori that ln2-singularities do not appear
in the calculation of σ(ω). In this sense, the problem of
calculating the average DOS decouples from the problem
of calculating the average conductivity. Under these con-
ditions we may sum the most singular contributions to
the average DOS via a simple gauge transformation: For
a given realization of the disorder U(r) = 1

V

∑
q eiq·rUq,

the imaginary-time Green function can be written in real
space in terms of path integrals as

G(r, r′; τ) ≡ −
〈
ψ(r, τ)ψ̄(r′, 0)

〉
, (12)

where the integration measure D{ψ} in

〈. . . 〉 =
∫
D{ψ} . . . e−S{ψ} (13)

is assumed to be properly normalized and the action S{ψ}
is given by

S{ψ} =
∫
K

[
−iω̃n + k2/2m− µ

]
ψ̄KψK

+
∫
K

∫
Q

Uqψ̄K+QψK +
1
2

∫
Q

fq ρ−QρQ . (14)

Here we have used the collective label K = (k, iω̃n)
for momentum k and fermionic Matsubara frequency
ω̃n = (2n + 1)π/β, and Q = (q, iωm) is the collective
label for momentum q and bosonic Matsubara frequency
ωm = 2πm/β.

ψK =
∫
V

ddr
∫ β

0

dτ e−i(k·r−ω̃nτ)ψ(r, τ) , (15)

ψ̄K =
∫
V

ddr
∫ β

0

dτ ei(k·r−ω̃nτ)ψ̄(r, τ) (16)

are conjugate (fermionic) Grassmann fields and

ρQ =
∫
K

ψ̄KψK+Q (17)

is the Grassmann representation of the density opera-
tor.

∫
K is short for 1

βV

∑
k,ω̃n

and
∫
Q is an abbrevi-

ation of 1
βV

∑
q,ωm

. In the following we will also use
δQ ≡ βV δq,0 δωm,0.

The electron-electron interaction may be decoupled
with the help of a Hubbard-Stratonovich transformation:
Using the identity

e−
1
2

R
Q
fq ρ−QρQ =

∫
D{φ}e−i

R
Q
ρ−Q φQe−

1
2

R
Q
f−1
q φ−QφQ ,

(18)

we get an action quadratic in the Grassmann fields:

S{ψ, φ} =
∫
K

∫
Q

[
−
(
G−1

0

)
K+Q,K

+ iφQ
]
ψ̄K+QψK

+
1
2

∫
Q

f−1
q φ−QφQ . (19)

(
G−1

0

)
K+Q,K

=
[
iω̃n − k2/2m+ µ

]
δQ−Uq is the inverse

of the non-interacting Matsubara Green function for the
given realization of disorder. If G(r, r′; τ ;φ) satisfies

[−∂τ +∇2
r/2m+ µ− iφ(r; τ) − U(r)]G(r, r′; τ ;φ) =

δ(r− r′)δ∗(τ) , (20)

where φ(r, τ) =
∫
Q ei(r·q−ωmτ)φQ and δ∗(τ) ≡

∑
ω̃n

eiω̃nτ

is an antiperiodic delta-function, we may easily integrate
out the fermionic fields and write G(r, r′; τ) as

G(r, r′; τ) =
∫
D{φ}G(r, r′; τ ;φ) e−S{φ} . (21)

The action S{φ} only depends on the bosonic Hubbard-
Stratonovich field φ and is given by

S{φ} =
1
2

∫
Q

f−1
q φ−QφQ − Tr ln

[
1− iĜ0φ̂

]
. (22)

Both Ĝ0 and φ̂ are infinite matrices in momentum and fre-
quency space with matrix elements (G0)K,K′ and φK−K′ ,
respectively. Expanding the trace of the logarithm and re-
taining only the Gaussian term, we obtain

S{φ} =
1
2

∫
Q

∫
Q′

(f−1
RPA)Q,Q′ φ−QφQ′ (23)

where for the given realization of disorder

(f−1
RPA)Q,Q′ = f−1

q δQ−Q′ + (Π0)Q,Q′ (24)

is the dynamically screened interaction in the random
phase approximation (RPA) and

(Π0)Q,Q′ = −
∫
K

∫
K′

(G0)K+Q,K′+Q′(G0)K′,K (25)

is the polarization. It should be noted that for a clean
system with a linearized energy dispersion and dominant
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forward scattering this Gaussian approximation becomes
exact [15]. Since the ln2-singularity is due to forward scat-
tering and the disorder is assumed to be weak the Gaus-
sian approximation made here seems reasonable. We will
come back to this approximation in Section 3.

From perturbation theory [1] we know that the
ln2-singularity of the DOS is due to momenta and fre-
quencies satisfying

|ωm|/D0κ� |q| � (|ωm|/D0)1/2 , |ωm| � τ−1
0 . (26)

Let us therefore separate the Hubbard-Stratonovich field
into a part involving only these dangerous modes, φd, and
a harmless part φh ≡ φ − φd. Indicating summation over
momenta and frequencies satisfying equation (26) by a
prime, the field φd can be written as

φd(r, τ) =
∫ ′
Q

ei(q·r−ωmτ)φQ . (27)

To sum up the leading divergences via a gauge transfor-
mation, we make the ansatz

G(r, r′; τ ;φ) = G1(r, r′; τ ;φ)ei(Φ(r;τ)−Φ(r′;0)) (28)

and choose Φ(r; τ) such that ∂τΦ(r; τ) = φd(r; τ). In this
case, G1(r, r′; τ ;φ) satisfies the differential equation

[−∂τ − (−i∇r −A(r; τ))2/2m+ µ− iφh(r; τ) − U(r)]

× G1(r, r′; τ ;φ) = δ(r− r′)δ∗(τ) , (29)

where A(r; τ) = −∇rΦ(r; τ) is a longitudinal vector po-
tential. The above gauge transformation is familiar from
classical electrodynamics where it is also possible to gauge
an electric field E = −∇φ such that E = −∂tA. Instead
of the dangerously singular charge vertices giving rise to
the ln2-singularity, the current vertices associated with
the longitudinal vector potential A can only lead to a ln-
singularity of G1. Since we are only interested in the most
singular corrections to the DOS, we may approximate

G1(r, r′; τ ;φ) ≈ G0(r, r′; τ) , (30)

where G0 is the Green function of free fermions for the
given disorder potential.

Solving ∂τΦ(r; τ) = φd(r; τ) for Φ(r; τ), we obtain

Φ(r; τ) =
∫ ′
Q

iφQ
ωm

ei(q·r−ωmτ) . (31)

The integral over the Hubbard-Stratonovich field may now
be done resulting in

G(r, r′; τ) ≈ G0(r, r′; τ)eQ(r,r′;τ) . (32)

Here G0(r, r′; τ) is the Green function of free fermions and
the Debye-Waller factor Q(r, r′; τ) is given by

Q(r, r′; τ) = −
∫
Q

∫
Q′

(fRPA)Q,Q′
ω2
m

×
[
e−i(q·r−ωmτ) − e−iq·r′

] [
ei(q′·r−ωmτ) − eiq′·r′

]
. (33)

To calculate the DOS, it is sufficient to know the disorder-
average of G(0, 0; τ) ≈ G0(0, 0; τ) exp(Q(0, 0; τ)). Fol-
lowing Finkelstein [7] we factorize the disorder average
G(0, 0; τ) as G(0, 0; τ) ≈ G0(0, 0; τ) exp(Q(0, 0; τ)). With
this factorization, the imaginary time Green function at
finite temperature T can be written as

G(τ) ≈ G0(τ)eQ(τ) , (34)

where G0(τ) ≡ G0(0, 0; τ) is the disorder-averaged Green
function of free fermions,

G0(τ) = −ν0
π/β

sin(πτ/β)
, (35)

and the Debye-Waller factor Q(τ) ≡ Q(0, 0; τ) is given by

Q(τ) = − 1
βV

∑
q,ωm

′ fRPA
q,iωm

ω2
m

[1− cos(ωmτ)] . (36)

Here, fRPA
q,iωm

≡ βV (fRPA)Q,Q is the dynamically screened
averaged Coulomb interaction. Diagrammatically, the
above factorization of the disorder amounts to neglecting
all diagrams involving disorder lines which do not dress
the bare propagator or give a diffusion contribution. In
the language of the replica sigma model used in refer-
ences [7,8] this approximation should be equivalent to
including only soft modes. The diagrams actually con-
tributing to equations (34–36) are shown in Figure 1. It is
important to emphasize that in deriving equations (34–36)
the sub-leading logarithmic corrections have been ignored,
so that it would be inconsistent to retain sub-leading terms
involving only a single logarithm in the evaluation of the
Debye-Waller factor.

Apparently, the above gauge-transformation method
for re-summing the leading terms in the perturbative ex-
pansion of the single-particle Green function has first been
used by Nazarov [16]. Later, several authors employed this
technique to calculate the DOS of disordered interacting
electrons [9–11]. However, one should keep in mind that in
practice this method relies on the fact that the problem
of calculating the average single-particle Green function
decouples in the sense discussed above from the problem
of calculating the conductivity. In particular, for 2d dis-
ordered electrons subject to short-range interactions, the
perturbative calculation of ν(ω) and σ(ω) both involve
lnω-singularities, so that a naive application of the above
gauge-transformation trick for short-range interactions in
2d is at least problematic. This is also the case for diffu-
sive quasi 1d electrons, where the perturbative calculation
of both ν(ω) and σ(ω) leads to |ω|−1/2-singularities [1].
Hence, also in this case it is problematic to calculate the
average DOS using equations (34–36) without considering
simultaneously the low-frequency behavior of the conduc-
tivity. We shall come back to this point in Section 4.



L. Bartosch and P. Kopietz: Zero bias anomaly in the density of states of low-dimensional metals 33

a)

b)

c)

d)

e)

Fig. 1. Feynman diagrams contributing to the full Green func-
tion G(τ ) in the approximation discussed in the text: a) dia-
grammatic representation of the bare Green function, the dis-
order line, and the bare interaction; b) disorder averaged Green
function in the Born approximation; c) diffusion renormalized
vertex; d) dynamically screened RPA interaction; e) diagram-
matic representation of the full Green function G(τ ).

3 Zero bias anomaly in 2d

For the frequency-momentum regime defined in equa-
tion (26) the RPA-interaction is given in 2d by [1]

fRPA
q,iωm ≈ (2D0ν0)−1|ωm|/q2. (37)

Converting the sum over Matsubara frequencies into an
integral and performing the momentum integral in the
thermodynamic limit V → ∞, the Debye-Waller fac-
tor (analytically continued to real time) may be written as

Q(it) =
r0
2

∫ τ−1
0

0

dω
ω

ln
(

ω

D0κ2

)
×
[

1− cos(ωt)
tanh(βω/2)

+ i sin(ωt)
]
. (38)

To be consistent with the approximation made in equa-
tion (34), we retain only ln2-singularities and ignore all
terms involving only single logarithms: Within this ap-
proximation the imaginary part of Q(it) vanishes, and for

arbitrary temperatures we find

Q(it) ∼ −r0
4

ln(t/τ1) ln(t/τ0). (39)

The DOS at finite temperature T = 1/β is now given by

ν(ω, T ) ≈ ν0 coth
(
βω

2

)
2
β

∫ ∞
τ0

dt
sin(ωt)

sinh(πt/β)

× exp
[
−r0

4
ln(t/τ1) ln(t/τ0)

]
. (40)

For T = 0, equation (40) reduces to equation (8) which
for |ω| � Ω2 reduces to equation (7). If we consider the
DOS at the Fermi energy as a function of temperature,
we find for T � Ω2 an equation similar to equation (7),
with ω replaced by 2T . Hence, for |ω| or 2T � Ω2, we
have

ν(ω, T ) ≈ ν0 exp
[
−r0

4
ln(max (|ω|, 2T )τ0)

× ln(max (|ω|, 2T )τ1)
]
. (41)

Setting T = 0 and then taking ω → 0, the leading term in
the asymptotic expansion of equation (40) is

ν(ω) ∼ ν0
4

π1/2

(
τ1
τ0r0

)1/2 |ω|
Ω2
· (42)

Noting that
√
τ0τ1 = r0/(ν0e

4), equation (42) can also be
written as

ν(ω) ∼ C |ω|
e4

, (43)

where the numerical constant C is given by

C = 4(r0/π)1/2 exp[1/r0] . (44)

On the other hand, if we first set ω = 0 and then con-
sider the leading behavior at low temperatures, we obtain
for T � Ω2

ν(0, T ) ∼ 2C
T

e4
· (45)

Thus, at low temperatures the average DOS at the Fermi
energy vanishes linearly in T . For |ω|, 2T � Ω2, equa-
tions (43, 45) turn into

ν(ω, T ) ∼ C max(2T, |ω|)
e4

· (46)

A plot of the DOS for various temperatures is shown in
Figure 2.

Surprisingly, equation (46) resembles the well-known
classical Efros-Shklovskii Coulomb gap of two-dimensional
electrons in the localized regime, where the DC con-
ductivity σ(0) vanishes [17]. Note, however, that in the
derivation of equation (46) we have assumed that the
DC conductivity σ(0) remains finite, i.e. the electrons are
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ω/Ω2

ν
(ω

)/
ν

0

0
0

0.2

0.4

0.5−0.5

0.6

0.8

1

1−1

Fig. 2. Graph of the average DOS ν(ω) in 2d for various tem-
peratures, see equation (40). We have chosen r0 → r∗ = 1/π
and τ1 = τ0. Curves from top to bottom are for T/Ω2 =
0.8, 0.4, 0.2, 0.1, 0.05, 0.025, 0.

assumed to be delocalized. The difference between the lo-
calized and the delocalized regime manifests itself in the
dimensionless prefactor C: whereas in the case of the clas-
sical Coulomb gap of localized electrons the constant C is
a number of the order of unity that depends on the geom-
etry of the underlying lattice, for the quantum Coulomb
gap discussed here, C depends on the dimensionless con-
ductivity of the system. The existence of the Coulomb
gap in the delocalized regime of a disordered interact-
ing 2d metallic system was also found numerically by Efros
and Pikus [18]. More recently, an intermediate delocalized
phase in small clusters of disordered interacting electrons
has been found numerically in reference [19].

Formally, the derivation of equation (40) is only valid
in the limit of weak disorder where r0 = 1/πkF `� 1. We
have implicitly assumed that the DC conductivity σ(0)
does not deviate significantly from the conductivity σ(ω)
at frequency ω ≈ 1/τ0. However, if the conductivity
has a finite DC limit σ(0), then it is reasonable to
expect that the qualitative behavior of the DOS can be
obtained by simply replacing r0 → r∗ = (e2/h)/πσ(0)
in equation (40). This replacement can be justified via a
simple renormalization group argument [10]: As already
discussed in the preceding section, for a disordered
system the Gaussian approximation for the Hubbard-
Stratonovich field φ is not exact. In 2d, the Gaussian
part of the averaged bosonic action can approximately be
written as

S2{φ} =
∫
Q

q2

r0|ωm|
φ−QφQ . (47)

If we consider the limits V →∞ and T → 0, we have
∫
Q =∫

dω
2π

∫ d2q
(2π)2 . It turns out that S2{φ} is invariant under

the scaling transformation q → q′ = bq, ω → ω′ = b2ω
and φQ → φ′Q′ = φQ/b

2. Here b > 1 is the length rescaling
factor. Let us now approximate the vertices occuring in the
non-Gaussian terms in an expansion of S{φ} by constants,

T/Ω2

ν
(T

)/
ν

0

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Fig. 3. Temperature-dependence of the average DOS ν(T ) at
the Fermi energy in 2d. The parameters are again r0 → r∗ =
1/π and τ1 = τ0.

such that the nth-order term is

Sn{φ} = un

∫
Q1

· · ·
∫
Qn

δQ1+···+Qn φQ1 · · ·φQn . (48)

Then it is easy to see that under the above transformation

un → u′n = b−2(n−2)un . (49)

Hence, under a usual renormalization group step of a
Wilsonian RG including the elimination of modes with
large momenta or high frequencies and a successive
rescaling as considered above, the un’s become smaller
and r0 gets renormalized. If we consider a metallic sys-
tem with a finite conductivity σ(0), then integrating out
UV-modes leads us to a Gaussian fixed point with r0 re-
placed by r∗ = (e2/h)/πσ(0). Thus the infrared physics
is correctly described by a Gaussian action with r0 → r∗.
The connection between the low-frequency behavior of the
conductivity and the DOS has also been emphasized by
Nazarov [16], and by Levitov and Shytov [9].

For a possible comparison of our results with future
tunneling experiments on semiconductor materials which
apparently show a metal-insulator transition [5,6] (as
far as we know, such experiments have not been per-
formed yet), we have plotted in Figure 2 the frequency-
dependence predicted by equation (40) for r0 → r∗ = 1/π,
corresponding to the zero-temperature conductivity of or-
der σ(0) ≈ e2/h. Saturation values in this regime are
typically encountered in the metallic regime close to the
apparent metal-insulator transition [6]. The temperature-
dependence of the average DOS at the Fermi energy is
shown in Figure 3.

It should be noted that in deriving equation (40) we
have consistently neglected corrections involving single
logarithms. We cannot exclude the possibility that these
corrections lead to a further depletion of the Coulomb
gap. For example, taking the (sub-leading) imaginary part
of the full Debye-Waller factor given in equation (38)
into account would lead to a nonlinear suppression of the
DOS. However, as discussed above, such an approximation
would not be systematic.
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Fig. 4. Graph of the average DOS ν(ω) in 1d for various tem-
peratures, see equation (51). The curves from top to bottom
are for T/Ω1 = 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.

4 Zero bias anomaly in 1d

As discussed in Section 2, the naive application of equa-
tions (34–36) in quasi 1d is problematic, because in this
case the interaction corrections to the DOS and to the
conductivity both involve the same type of singularities.
Keeping this caveat in mind, let us nevertheless briefly
discuss the predictions of equations (34–36) in quasi 1d.
A similar calculation has recently been performed in
reference [12].

Since screening is much less effective in one dimen-
sion than in higher dimensions, we simply approximate the
one-dimensional RPA-interaction by a constant, fRPA

q,iωm
≈

f0 [1]. This approximation should be correct up to loga-
rithmic corrections in frequency. A calculation analogous
to the one leading to equation (38) results in

Q(it) = −
√

2Ω1

[∫ ∞
0

dω√
2π

1− cos(ωt)
ω3/2 tanh(βω/2)

+ i
√
t

]
,

(50)

where Ω1 is given in equation (5). Note that in 1d, there
is no need for an ultraviolet cutoff. At T = 0, we have
ReQ(it) = ImQ(it), such that the imaginary part of
Q(it) cannot be neglected. The DOS at finite tempera-
ture T = 1/β can now be written as

ν(ω, T ) ≈ ν0 coth
(
βω

2

)
2
β

∫ ∞
0

dt
sin(ωt) cos(

√
2Ω1t)

sinh(πt/β)

× exp

[
−
√
Ω1

π

∫ ∞
0

dω′
1− cos(ω′t)

(ω′)3/2 tanh(βω′/2)

]
· (51)

As can be easily checked, for |ω| � max{Ω1, T}, equa-
tion (51) reduces to the perturbative result given in
equation (4). A graph of ν(ω, T ) for different tempera-
tures is shown in Figure 4. The DOS at the Fermi energy
as a function of temperature is shown in Figure 5. The
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Fig. 5. Solid line: graph of the average DOS ν(T ) for ω =
0, see equation (51). Dotted dotted line: the approximation

exp(−
p

2Ω1/T ).

DOS is well approximated by an exponentiation of the
perturbative result, ν(T ) ≈ ν0 exp(−

√
2Ω1/T ), which is

quite similar to a result found in reference [12]. At zero
temperature, equation (51) may be simplified to

ν(ω, T = 0) =
ν0

π
Re

∫ ∞
0

dx
sinx2

x
exp

[
−2x

√
iΩ1

|ω|

]
·

(52)

For |ω| � Ω1, this integral is easily evaluated within a
saddle-point approximation,

ν(ω, T = 0) ∼ ν0

√
|ω|
πΩ1

exp
[
−Ω1

|ω|

]
, |ω| � Ω1 , (53)

which differs from the corresponding expression given by
Mishchenko et al. [12] (see Eq. (9)) by a different pref-
actor but agrees with a recent result found by Rollbühler
and Grabert [13]. The exponential suppression of the DOS
is quite surprising and is possibly an artifact of the in-
consistent exponentiation of the |ω|−1/2-singularities in-
herent in equations (53, 9) for quasi 1d systems. While
in 2d it was possible to separate leading ln2-singularities
from sub-leading ln-singularities and sum up the most sin-
gular contributions, a similar separation is not possible
in 1d. The ultimate low-frequency behavior of the DOS
in 1d might therefore be altered by diagrams neglected in
equation (34).

5 Summary and conclusions

In summary, we have considered the fate of the singular
perturbative corrections to the average DOS in quasi 1d
and 2d disordered metals when the frequency and the tem-
perature are reduced such that one leaves the perturbative
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regime. For a 2d metal with long-range Coulomb interac-
tions, it is possible to re-sum the leading ln2-singularities
in the perturbative expansion of the average DOS to all
orders in perturbation theory. The method relies on the
fact that similar singularities do not appear in the per-
turbative expansion of the average conductivity. For a 2d
system with short-range interactions or for a quasi 1d sys-
tem a similar separation of energy scales does not exist, so
that approximate expressions of the type given in equa-
tion (34), which involve the exponentiation of a certain
subclass of Feynman diagrams, are problematic in this
case. Thus, in practice the gauge-transformation trick de-
scribed above, which has recently been employed by many
authors [9–11,16], is only controlled in the case of 2d
disordered electrons interacting with long-range Coulomb
forces in the regime where the conductivity has a fi-
nite DC-limit. In this case this method yields a simple
interpolation formula (40) for the average DOS, which
predicts a smooth crossover from the perturbative regime
at high frequencies to a new low-frequency regime, where
ν(ω, T ) vanishes linearly in ω or T . The average DOS of
localized classical electrons is known to show a similar
frequency- or temperature-dependence [17]. In contrast,
the metallic Coulomb gap discussed here has a quantum
mechanical origin and requires delocalized electrons with
a finite DC conductivity. Numerical evidence for such a
metallic Coulomb gap has been found in reference [18].

In principle, it should be possible to verify the exis-
tence of the metallic Coulomb gap experimentally via tun-
neling experiments in strongly correlated disordered sys-
tems with a finite DC conductivity. The expected shape of
a typical trace of the tunneling conductance as a function
of the applied voltage is shown in Figure 2. Recent tunnel-
ing experiments by Bielejec et al. [2] in quench-condensed
Beryllium films show a crossover from the perturbative
regime with logarithmic corrections to an apparently lin-
ear Coulomb gap in the DOS. However, at the lowest tem-
peratures the DOS exhibits a hard correlation gap, the
origin of which remains an open question.

We would like to thank L. Bányai, J. Rollbühler and H. Grabert
for discussions.
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